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The steady motion of a flat surfboard propelled by a solitary wave is considered. The 
shape of the free surface and the flow of the fluid are determined numerically by series 
truncation for flows without spray or splash. These flows all bifurcate from the 
uniform horizontal flow a t  the critical value of the Froude number. Various limiting 
cases of these special flows are described analytically. Flows past submerged 
hydrofoils are discussed also. , 

1. Introduction 
Surfing is the motion of a relatively flat object propelled by a wave along the 

surface of a fluid. The object alters the motion and the surface of the fluid, while the 
fluid exerts forces and moments on the object. We shall determine the fluid motion, 
the surface shape, and the forces on a flat surfboard on a two-dimensional potential 
flow when the unaltered fluid motion is a solitary wave. 

The horizontal force on a surfboard in an inviscid fluid is due to wave-making and 
to spray or splash. In  two dimensions a surfboard carried by a solitary wave does not 
make waves because the flow is supercritical. We shall show that there are particular 
flows without spray or splash either. Thus for these special flows, there is no net 
horizontal force exerted on the surfboard, while for flows with a splash jet there is a 
net horizontal drag force. 

In  addition to the dynamic force, there is a buoyancy force acting on the board. 
It balances the normal component of the weight of the board and the surfer. The 
tangential component of the weight is balanced by the viscous force. Therefore we 
shall omit these forces from our analysis. 

First, we shall consider a horizontal board riding on top of a wave, without a spray 
or splash jet, as is shown in figure 1. We shall find a two-parameter family of such 
flows. The parameters are L/H and W / H  where L and W are the board length and 
height, and H is the water depth at infinity. These flows all bifurcate from the 
uniform horizontal flow, for which W / H  = 1,  at the critical value F = 1 of the Froude 
number. 

Next we shall consider a sloping board riding on the face of a wave. For such a 
board, we shall calculate a two-parameter family of flows without jets for which there 
is no force on the board. These flows also bifurcate from the uniform stream at 
F =  1.  

Finally we shall indicate what the corresponding results would be for a submerged 
flat hydrofoil. 

These surfing flows can be compared with planing flows on deep water. In planing, 
the free surface without the planing object is flat. Furthermore, waves and wavc drag 
always occur in deep water planing, and usually splash and splash drag occurs as 
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FIGURE 1 .  ( a )  The flow past a horizontal flat plate of length L at height W above the bottom. The 
endpoints of the plate are at K and P.  The flow has depth H and velocity [J at x = 2 co. These 
points are denoted I and J .  The profile shown is a computed solution for F2 = 1.4 and y = 5 ~ / 1 6 .  
The horizontal and vertical scales are equal, and the coordinate axes are shown. ( 6 )  Computed 
solution for flow past a horizontal plate with F2 = 1.9 and y = 57c/l6. 

well. Therefore an external propulsive force is required to maintain the motion. Such 
flows have been calculated by Green (1936), neglecting gravity, and by Rispin (1967), 
Wu (1967), Dagan & Tulin (1972), Ting & Keller (1974), and Naghdi & Rubin (1981), 
including gravity. Other authors have calculated them by using linear free-surface 
theory (Wagner 1932; Cumberbatch 1958). Cumberbatch (1958) and Ting & Keller 
(1977) also showed that the splash jet can be eliminated by shaping the planing 
object properly. 

In  $2 we formulate the problem for a horizontal board and present the numerical 
method for solving it. In  $3 we give the numerical results and describe various 
limiting cases. I n  $4 we treat the sloping board. In  $ 5  we discuss flow past a 
submerged hydrofoil and in $6 we state the conclusions. 

2. Formulation 
Let us consider the flow in the region shown in figure 1. The horizontal bottom IJ 

is a streamline on which we require $ = 0. We choose Cartesian coordinates with the 
x-axis parallel to the bottom and the y-axis directed vertically upwards. Gravity g 
is acting in the negative y-direction. As 1x1 + co, the flow is required to approach a 
uniform stream with constant velocity U in the x-direction and uniform depth H .  
The coordinate y is measured from the level of the free surfaces a t  1x1 = co. The free 
surfaces IK  and PJ and the horizontal plate KP are part of a streamline on which 
$ = U H .  We denote by L the length of the plate K P .  

Let the complex potential be f = $+i$. Without loss of generality we choose 
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# = 0 a t  the middle of the plate. On the free surfaces, where the pressure is constant, 
the Bernoulli equation yields 

$f +gy = tUz on I K  and P J .  (2.1) 

Hence q denotes the magnitude of the velocity. 

becomes 
We choose H as the unit of length and U as the unit of velocity. Then (2.1) 

qz+$y = 1 on I K  and P J .  (2 .2 )  

Here F is the Froude number defined by 

F = U/(gH)i .  (2.3) 

Now we consider the plane of the complex potential f = + + i$. In  it let b denote 
the values of the potential function a t  the two separation points, P and K on 

Let the complex velocity be [ = u- iv, where u and v are the x- and y-components 
of the velocity. As # --f f 00, the flow approaches a uniform stream with constant unit 
velocity. For F > 1, we expect the approach to be described by exponentially 
decreasing terms, so we write 

l+b= 1 .  

5 -  l+DeTnAf as#+*oo. (2.4) 

Here D is a constant to be found as part of the solution and h is the smallest positive 
root of 

F27ch-tannh = 0. 

By analogy with other free-streamline problems, we expect 6 to behave at  the 
edges like 

[ - G + H ( f + b ) i  as f - t f b .  (2.6) 

Here G and H are constants to be found as part of the solution. 

0 < $ < 1, satisfying (2 .2 ) ,  (2.4), (2.6) and the kinemetic condition 
The problem is to find 6 as an analytic function of f = #+i@ in the strip 

v = O  o n K P  a n d I J .  (2.7) 

We define the new variable t by the relation 

2 l+t  
R l--t 

f =-log-. 

The transformation (2.8) maps the flow domain into the interior of the unit circle in 
the t-plane. The bottom IJ goes onto the real diameter and the free surface and the 
plate K P  go onto that portion of the circumference lying in the upper half of the 
t-plane. The points t = eiY and t = -eViy are the images in the complex t-plane of the 
separation points P and K .  By using (2.8) we find that b and y are related by 

(2.9) 

We use the notation t = reio so that the free surfaces and the plate are described by 
r = l  a n d O < c r < n .  

y = 2 tan-’ e-nb12. 

We represent the complex velocity [ by 

6 = eQ(t), (2.10) 
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where O(t) has the expansion 
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Q(t)  = A(1- t2)2A+B[( t2+ 1)’-4t2 C O S ’ ~ ] ~  
‘XJ 

-B(4-4 cosZy)f+ c an(t2n-1). (2.11) 
n-1 

It can be checked that the expression (2.10) satisfies (2.4) and (2.6). The kinematic 
condition ( 2 . 7 )  on IJ  is automatically satisfied by requiring the coefficient a, to be 
real. For given values of F and y ,  the coefficient a,  and the constants A and B have 
to be determined to make (2 .10)  satisfy the Bernoulli condition (2 .2 )  and the 
kinematic condition (2.7) on the plate K P .  Once A ,  B, and the a ,  are known, the 
length L of the plate and the free-surface profiles can be obtained by integrating 
numerically the identity 

- + 1 -  = - (2.12) 
ax .ay 1 

a4 5’ 
We shall solve the problem approximately by truncating the infinite sum in (2.11) 

after N terms. Differentiating (2 .2 )  with respect to a and using ( 2 . 8 )  yields 

- 0. 
1 2 B(c) 

R [ii(a)]’ + [fi(a)I2 sin a 
F2[ii(a)ii,(a)+B(a)fi,(a)]-- (2.13) 

Here ii(a) and B(u) are the components of the velocity on the free surfaces and on the 
plate. 

We now introduce the N + 2 mesh points, 

R 
a -  (I-;) ,  I = 1 ,..., N + 2 .  
- 2 ( N + 2 )  

For simplicity, we shall consider only values of y of the form 

R 

= 2(N+2)”” 

(2.14) 

(2.15) 

where M is an integer smaller than N + 2 .  We determine the functions ii and t? 
and their derivatives ii, and 5, in terms of the N + 3  unknowns A , B , h  
and a, ( i  = 1,  ..., N )  by substituting t = ein into (2.11). We find the N + 3  unknowns 
by satisfying (2.13) a t  the mesh points a,,I = 1, ..., M and ( 2 . 7 )  a t  the mesh points 
aI, I = M + 1, . . . , N + 2 .  Thus we obtain N + 2 nonlinear algebraic equations. The last 
equation is obtained by imposing ( 2 . 5 ) .  This system of equations is solved by using 
Newton’s method. 

3. Numerical results 
The numerical scheme described in the previous section was used to compute 

solutions for various values of F and y.  Typical profiles are shown in figure 1 .  As 
y + 0, the length L of the plate tends to infinity and the numerical results approach 
the semi-infinite plate results of Vanden-Broeck & Keller (1987). As y+tn; we 
find that L-tO and the flow reduces to a solitary wave. Values of L versus F2 for 
y = 5n/16 are shown in figure 2 .  

We now define the amplitude parameter 

u =  W I H  (3.1) 
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FIGURE 2. The length L of the plate as a function of F2 for y = 5n/16. 
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FIGURE 3. The dimensionless height of the board above the free surface level a t  infinity is 
( W - H ) / H  = a - 1. It is shown here as a function of F2 for three values of y .  The lower curve for y = 0 
corresponds to a semi-infinite plate, the middle curve for y = 5n/16 corresponds to a plate of the 
finite length L shown in figure 5, and the upper curve for y = in corresponds to a solitary wave with 
no plate, i.e. L = 0. The dot-dash line at the top of the figure is ralrulated from (3.2). i.e. 
a- 1 = +F*. It corresponds to the limiting cases in which stagnation points with 120' angles orcur 
a t  the ends of the board. The dashed curve a t  the bottom of the figure is for flow over a seniirircular 
obstacle of radius 0.2H on the bottom of the channel (Vanden-Broeck 1987). 
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F2 for y = 5 ~ / 1 6 .  
FIGURE 4. The dimensionless vertical force Z I  exerted on the horizontal board as a function of 

(see figure 1). In figure 3 we present numerical values of a -  1 versus F2 for various 
values of y.  For y = 0 the results are described by the exact relation F2 = a derived 
by Vanden-Broeck & Keller (1987). For y = in, the numerical values of a as a 
function of F2 agree with the solitary-wave results derived by Hunter & Vanden- 
Broeck (1983) and others. 

The d o t d a s h  line in figure 3 corresponds to solutions with stagnation points and 
120" angles at the separation points. The equation of this line is obtained by 
substituting y = a-  1 and q = 0 into (2.2) : 

a-1 = iF2. (3.2) 

As a + 1, each of the two free surfaces approaches half a solitary wave of small 
amplitude. Thus the equation of the free surfaces as a+ 1 tends to the well-known 
solution of the Korteweg-de Vries equation : 

y = (a-1) sech'[(--): 3 (x i - iL)] .  1x1 > $L, 
4 ( l + a )  (3.3) 

F = at. (3.4) 

Since we neglect viscosity, the only forces acting on the plate are normal pressure 
forces. By using Bernoulli's equation, we find that the dimensionless force n acting 
on the plate is given by 

Here p is the density of the fluid. Numerical values of Il versus F2 are presented in 
figure 4 for y = 51~116. These values were obtained by substituting the expansion 
(2.10) into (3.5) and evaluating the integral numerically. Figure 4 and similar results 
obtained for other values of y indicate that I7 =I= 0 unless F = 1. The physical 
significance of this result will be explained in the next section. 
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FIGURE 5. Computed profile of flow past a flat surfboard : (a )  inclined at the angle /3 = 0.2 t o  the 
horizontal, for F = 1.225 and y = 5n/16; ( b )  inclined a t  the angle p = 0.3 to  the horizontal with 
F = 1.29 and y = 5n/16. 

4. Flow past an inclined surfboard 
We now consider a more realistic surfing flow problem, namely the flow past a flat 

board or plate inclined a t  an angle p (see figure 5 ) .  The solutions described in $3  are 
solutions of the present problem for p = 0. 

It is not obvious that there are solutions without a jet for p + 0 .  Previous 
calculations (Green 1936; Rispin 1967; Wu 1967; Ting & Keller 1974) show that 
generally there is a jet or spray thrown up a t  the leading edge of the plate (see 
figure 6). (In potential flow the jet must be assumed to disappear into a non-physical 
second sheet.) We are interested in particular solutions for which the thickness 6 of 
the jet is equal to zero. 

To find such solutions, we consider the solutions for /3 = 0 considered in $3. Those 
solutions exist for F2 in the range 1 < F2 < 2. For each solution there is a force I7 
exerted on the board, as is shown in figure 4. For a board inclined at an angle p, if 
there is no jet there can be no net horizontal force on the board, by conservation of 
momentum. But then there can be no net normal force either, because the board is 
flat. Consequently, as p+O these solutions must approach one of the solutions of the 
problem with p = 0 for which I7 = 0. The only such solution is that a t  F = 1. We 
conclude that if solutions without a jet exist for p =k 0, they must branch from the 
solution with p = 0 and F = 1, which is the uniform horizontal flow. 

For a plate that is not flat, zero horizontal force does not imply zero total force. 
Therefore a surfboard of arbitrary shape will usually have non-zero lift even if it has 
no drag. Furthermore, the branches of jet-free solutions for such boards correspond 
to perturbed bifurcation from F = 1, not to regular bifurcation, as we shall explain 
in $6. 

For flows with a jet, such as that in figure 6, the horizontal force on the board is 
l7(,8) sinp, where p is the slope angle of the board and n(p) is the normal force on it. 
For small this dimensionless force is approximately ZZ(0)p. Therefore the 
momentum loss in the jet, which is O(pU2S), must equal I7(0)PpU2H.  Thus 
S/H = O[pIZ(O)], and the jet thickness 6 is zero only when 17 = 0. 
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FIGURE 6. Sketch of the flow past an inclined surfboard on the rear face of a wave with a 
spray or splash jet of thickness 8. 

We now generalize the numerical procedure of $2 to compute the flow past a plate 
inclined a t  an angle p (see figure 5 ) .  In  the complex potential plane, - b and + b again 
denote the values of the potential function at  the separation points K aRd P. As 
before we map the complex potential plane into the t-plane by using (2.8). The points 
t = eiY and t = ei(n-y) are the images of the separation points K and P in the t-plane. 
Here y is defined by (2.9). 

by We represent the complex velocity 

[ = eQ(t), 

where Q ( t )  has the expansion 

Q(t) = A(1- t )2A+AA1(1+t)2A+B[t2-2 t  cosy+1]i+Bl[t2+2t cosy+l]i  
OD 

-B[2-2 cosylf-Bl[2+2 c 0 s y ] i - A ~ 2 ~ ~ +  C a,(tn-l). (4.2) 
n-1 

The expression (4.1) satisfies the kinematic condition (2.7) on IJ  if we require all the 
coefficients to be real. Furthermore, [(l) = 1. 

For given values of y and /3, the coefficients A ,  A , ,  B, B, and a, and the Froude 
number F have to be determined to make (4.2) satisfy [( - 1) = 1, the Bernoulli 
condition (2.13) and the kinematic condition 

v = u t a n p  (4.3) 

on the plate KP. To achieve this we truncate the infinite series in (4.2) after a finite 
number of terms and use the collocation procedure described in $2. 

The coefficients a, were found to decrease rapidly. For example, 

for y = 5x/16 and a = 0.2. 
~ ( 1 )  - -0.64, ~ ( 1 0 )  - - 0 . 3 4 ~  lo-', 

a(40) - -0.78 x 

Most of the calculations were performed with 60 coefficients. The results indicate that 
there is a two-parameter family of solutions. We chose these two parameters to be 
y and p. 

Typical profiles for y = 5x116 with p = 0.2 and /? = 0.3 are shown in figure 5. In 
figure 7 ,  we present numerical values of p versus F for y = 5x/16. As expected, the 
curve approaches F = 1 as p+O. We obtained similar results for other values of y. 
As y + & ,  the length of the plate approaches zero and the solution reduces to a 
solitary wave with a plate of arbitrarily small length a t  one of its inflexion points. 

For F close to 1 we expect the equation y = ~ ( x )  of the free surface to satidy the 
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FIGURE 7 .  The slope angle 1 is shown as a function of F for y = 5 K / 1 6 .  

Korteweg-de Vries equation. Integrating this equation and using the fact that ~ ' ( x )  
and ~ ( x )  aporoach zero as 1x1 --f co we obtain 

(4.4) 

At the separation points K and P the slope of the free surface should be equal to 
tanp. Thus, we should have 

[7'(x)I2 = 3 [ ~ ( x ) ] ~ ( l - F - ~  [ I +  7 ( X ) l l .  

[tan/3I2 = 3 ( ~ ~ ) ~ [ 1 - F - ~  (1 + Y K ) I :  

[tanpl2 = 3(yp)2[1-F-2(1+yp)]. 

Here yK and yp are the ordinates of the separation points K and P. Since the length 
of the plate is L we have the additional relation 

yp- yK = L sinp. (4.7) 

For a given value of L, relations (4.5)-(4.7) define 6 implicitly in terms of p. As a 
check on our numerical calculations we substitute our numerical values for yK and 
yp into (4.5) and (4.6) forb  = 0.1 and solve for F. We obtain the values F = 1.151 and 
F = 1.155. These values agree within 1 YO with the value F = 1.142 obtained from 
our numerical solution of the flow problem. This indicates that the free surface 
does indeed approach that of a small-amplitude solitary wave. 

Finally we recall that the direction of a potential flow can be reversed. Therefore, 
the profiles in figure 5 represent solutions for flows from right to left as well as for 
flows from left to right. Thus the board can be on either the front or rear face of the 
wave. However, it seems that it is stable only when it is on the front face. 

5. Flow past a submerged hydrofoil 
We shall now consider the flow past a horizontal flat plate of length L which is 

submerged beneath the surface of the fluid. Such a submerged plate may be thought 
of as a two-dimensional hydrofoil. The configuration can be represented by figure 1 
with the plate KP submerged to a distance D < W above the bottom, with W still 
denoting the maximum height of the free surface. For every value of the plat)e length 
L, and every value of D < H ,  a uniform horizontal flow is an exact solution of this 

* 
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W - D  

FIGURE 8. Sketch of the flow past a semi-infinite horizontal hydrofoil. 

problem. For these flows a = W / H  = 1, so they all lie on the F2 axis in figure 3. We 
expect that a one-parameter family of branches of solutions without singularities a t  
the ends of the plate will bifurcate from the point F = 1,a- 1 = 0, just as for the 
surfing flows shown in figure 3. The branch of solitary waves for which L = 0 will be 
the highest branch, while the branch with L = 00 will be the lowest branch. 

When L = co the hydrofoil is semi-infinite, as is shown in figure 8. For that case 
we can use conservation of mass and of the horizontal component of momentum to 
obtain an exact expression relating a to D / H  and F .  The calculation is similar to that 
in Vanden-Broeck & Keller (1987), and the result is 

-l 1 - [1+ 2F-2( 1 + [1+ 2F-2( 1 -a)] (a+) id i 
This solution yields a- 1 versus F2 on the branch of solutions with L = 00. 

The dot-dash curve in figure 3, corresponding to a stagnation point a t  the crest of 
the free surface, will still be given by (3.2). The vertical force or lift on the hydrofoil 
will be given by a curve like that in figure 4. 

When the plate is inclined a t  an angle /3 to  the horizontal, we also expect that there 
will be a two-parameter family of flows without singularities a t  the ends of the plate. 
For them the inclination p will vary with F in the same way as is shown in figure 7. 
The flows will all bifurcate from F = 1, /3 = 0. There will be no drag or lift on the 
plate. As the plate is moved toward the free surface, the flow will approach the 
surfing flow without any jet. Thus the flow around a submerged object will go over 
smoothly to the flow past an object in the surface without producing a jet. 

6.  Conclusion 
We have constructed solutions without splash or spray jets for the flow past 

horizontal and inclined flat surfboards. The flows bifurcate from the uniform stream 
at  F = 1 (see figures 3 and 7). Since fluid motion without the surfboard is a solitary 
wave, these solutions can be viewed as perturbed solitary waves. They arc perturbed 
by flat surfboards on their free surfaces. 

Our numerical procedure could be generalized to  investigate solitary waves 
perturbed by surfboards that are not flat, or by submerged obstacles. For such 
perturbations the uniform stream is not a solution for any value of F. Therefore these 
flows do not bifurcate from the uniform stream a t  F = 1. Instead we may expect 
perturbed bifurcation from F = 1.  

This expectation is confirmed by the numerical results of Vanden-Broeck (1987). 
He investigated solitary waves perturbed by a semicircular obstacle on the bottom 
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of the channel. The dashed line in figure 3 shows his numerical values of a- 1 versus 
F 2  for a semicircle of radius 0 . 2 H .  This curve can be interpreted as a perturbed 
bifurcation from F = 1. Similar results should be expected for non-flat surfboards. 

This research was supported in part by the Office of Naval Research, the Air Force 
Office of Scientific Research, and the National Science Foundation. 
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